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Abstract—The non-stationary random vibration of a lightly damped linear structure subjected to white noise
is considered. It is shown that the probability density function of the amplitude of the structural response
can be approximated by a Rayleigh distribution. Analytical formulae for the time dependent statistics of the
amplitude are presented. The analytical results are compared with data obtained by a numerical simulation.

INTRODUCTION

The problem of the response of linear structures to random excitation has occupied the
engineer and the applied scientist for quite some time. The theory for determining the statistical
properties of the structural response has been quite well developed and is available in standard
textbooks[1, 2]. However, problems pertaining to the statistical properties of the maximum of
the response or to the time at which the response exceeds a certain barrier are still under
investigation.

If the damping of the structural system is small, the response exhibits pseudo-sinusoidal
behavior with slowly varying, in time, amplitude and phase. Evidently, the determination of the
statistics of the response amplitude is particularly important in estimating the failure potential
of the dynamical system, which essentially is the goal of a probabilistic analysis of a physical
problem. It is understood that the concept of the response amplitude is applicable only when
the damping of the system is small. However, this assumption can be justified for a large class
of physical systems of engineering interest.

If it is desired to determine the statistics of the response amplitude at a time much longer
than the rise time of the structure, then the response can be assumed to be stationary. Under
this assumption, it can be shown that the probability density function of the response amplitude
is a Rayleigh distribution[2]. The crucial point of the proof is that the response being stationary,
the correlation of the response and its time derivative is zero. Clearly, this is not true if the
process is non-stationary. This will be the nature of the response at times which are much
shorter than the rise time of the structure. The problem of the non-stationary random response
of a linear single-degree-of-freedom system to white noise has been originally examined in Ref.
[3]. Typical examples of research effort pertinent to this problem are given in Refs. [4-6].

In the present paper, an approximate probability density function for the amplitude of the
non-stationary response of a lightly damped linear structure is derived. Analytical formulae for
the time-dependent moments are given. The results of the analytical approach are compared
with data obtained by a numerical simulation.

MATHEMATICAL BACKGROUND

Consider a linear single-degree-of-freedom structure described by the stochastic differential
equation

£+ 2{wax + wa2x = w(t), m

where w, is the natural angular frequency, and ¢ is the ratio of critical damping of the structure.
The symbol w(t) represents a white noise process with spectral density S constant over the
interval (— o, ). The dot above a variable denotes differentiation with respect to time.

Define the processes a(t) and ¢(t) by

x(t) = a(t) cos (wat + (1)) 2
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and

X(t) = — wqa(t) sin (wpt + $(1)). 3)
Using eqns (2) and (3) it is readily proved that

a¥(t) = x* + ¥w,’ 4)
and

¢(t)=—tan™ (wiﬂx) ~ @pt. (5

Using eqns (4) and (5) differential equations governing a(t) and ¢(t) can be derived as follows.
Differentiating eqns (4) and (5) with respect to time and using eqn (1) it is found

a(t) = —2{w,a sin’ (w,t + d(1)) — Ewﬂ sin (wat + (1)) (6)
and
. 2 . w(t)
¢(t) =~ {on sin (@nt + (1)) cOS (wnt + $(1)) =~ " COS (wnt + $(1)). 0

At this stage, additional assumptions about the problem are made. It is assumed that the
damping of the structure and the spectral density of the excitation are small. Mathematically,
these assumptions may be described by

(<1 (8)

and .
S=0. 9

Under these assumptions, it can be argued that a(t) and ¢(¢) are slowly varying functions of ¢.
Therefore, the response x(¢), eqn (2), exhibits pseudo-sinusoidal behavior like the one shown in
Fig. 1.

Using an asymptotic method introduced by Stratanovich[7], eqns (6) and (7) can be used to
derive the following equation for the amplitude a(¢)[8-10]

2
i =~ ton(a - %) + @are (o), (10)
where
2= ‘n's
7 ey (1

X(t)

Fig. 1. Narrow-band random process.
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is the stationary variance of x(t), and n(t) is a zero-mean, delta-correlated process with unit
intensity, i.e. E[n(t)n(t + 1)) = 8(7). In deriving eqn (10), various rapidly oscillating terms are
first averaged over one cycle, T = 2n/w,, of oscillation in a way similar to that of the technique
of Bogoliubov and Mitropolski[11]. Next, the fact that the band-width of the excitation is much
greater than that of the response, is exploited to justify the assumption of statistical in-
dependence of w(t) and the values of a(t) and ¢(t) corresponding to a slightly shifted time
t At

Equation (10) describes approximately the random evolution, in time, of the amplitude. Its
important feature is that it is not coupled with the phase ¢(). This fact simplifies significantly
the study of the random behavior of the amplitude. For example, in Ref. [8], eqn (10) has been
used to derive ordinary differential equations governing the moments of the first passage time
of the amplitude. In addition, the Kolmogorov equation associated with eqn (10) has been used
in Ref. [10] to study the probability distribution function of the first passage time of the
amplitude. In this paper, eqn (10) will be used to determine the statistics of the amplitude.

AMPLITUDE STATISTICS
The Fokker-Planck equation associated with the stochastic differential eqn (10) is

ap(a,t)=i[ ( _gf) ] 298%p
ot da fun| @ a/P oo da (12)

The symbol p(a, t) represents the probability density function of a(t). It is assumed that the
structure is initially at rest. Probabilistically, this can be expressed as

p(a,0)= 5(a), (13)
where §(a) represents the one-sided Dirac delta function. The boundary conditions for the
partial differential eqn (12) can be determined by imposing restrictions on a(t). Since a(t)
represents the amplitude of x(t), and therefore is non-negative, it is reasonable to construct a
solution of eqn (12) compatible with the restriction 0<q <, Under this restriction, the
eigenvalues d, and the eigenfunction E,(a) are found to be

d, = 2wy, r=0,1,... (14)

and

Ea)= %f, exp (~ a20)L,(aY20%), r=0,1,... (15)

where L, is the Laguerre polynomials. Using the properties of the Laguerre polynomials it can be
readily proved that

f En@Ea) 4, _ (16)

Eo(a) mry

where 8y, is the Kronecker delta symbol. The solution of eqn (12) can be put in the form
pla, )= C, exp(-dt)Ea), (17
r=0

where C, are constant coefficients to be determined by using the initial condition, eqn (13).
Combining eqns (13) and (17) yields

pla,0)=8(a)= 20 C.Ea). (18)

Multiplying eqn (18) by E,/E,, integrating from zero to infinity, and using the orthonormality
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relation (16), it is found
C =1 r=0,1,... (19)

Therefore, eqn (18) can be rewritten as

p@ =3 exp (- dEa) 0)
As t -, stationary solution, eqn (20) yields

1f22 p(a. t)=—‘§exp (- a’f20%), Q2n

which is the Rayleigh density function. This function, governing the probability distribution of the
amplitude of a stationary narrow-band Gaussian process, is usually derived by a quite different
approach[2]. Guided by this result for the stationary solution, one might attempt to find a closed
form solution for the non-stationary probability density function p(q, 1), eqn (20). This can be done
by using the properties of the Laguerre polynomials. For the purpose, eqn (20) is
rewritten as

pla,ty= % exp (— a*20?) 20 La*20)exp (— 2wt ). 22)
It is known that[12]

S Ly’ =22 (~lyf!(1 )} 23)
r=0 u

Applying eqn (23) for v = a*/20” and u = exp (— 2{w.t), eqn (23) can be rewritten as

a exp{— a’[2¢’[1 —exp (= 2{w )]}

o1 = exp (= 2Lan)] 24

pla, )=

Therefore, it has been proved that the probability density function of the non-stationary
response amplitude is approximately a time dependent Rayleigh distribution. This result,
besides its theoretical significance, facilitates the determination of the statistical moments of the
response amplitude a(t). Specifically, using eqn (24) it can be readily proved that

E[(a/a)z"“}=\/(%)Z'k(k+l)(k+2)..‘(2k+1)[l—exp(—2{w,,t)], k=0,1.... (2%

and
El(ala)™] = 2"k '[1 — exp (= 2fw,t)]. (26)
It is interesting to compare the results of the present analysis with the results of other

approaches to similar problems. For example, eqn (26) can be used to find an approximate
expression for the variable E[x*(#)]. Specifically, using eqn (2) it can be easily verified that

Xt = % GO+ cos 2wt + S, @7

If the rapidly oscillating term cos 2(w,t + ¢(1)) is neglected, as it was done for the derivation of
eqn (11), and eqn (26) is applied for k =2, it is found

Elx¥)o?1 = 1 —exp (— 2Lwat). (28)
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The exact expression for E[x*(t)] has been found in Ref. [3] by a different approach. The exact
expression is

—_ 2
ELr(nfe?) = 1 - 2L Seenl) [wf + anand sin Qo) + 22 gin? gt )], 29)
d

where ws® = o, (1~%). It is readily seen that eqn (29) reduces to eqn (28), if the rapidly
oscillating term sin (2w4t) and the 0(Z°) term are neglected. It can be also seen that eqn (29)
reduces to eqn (28) at times

t=tk=zﬁz k=0,1,... (30)
[CF]

independently of the assumption of small ratio of critical damping (.

The fact that the exact solutions for E[x*(t)], E[%*(t)] and E[x()%(t)] are obtainable, with
much calculational effort, however, could justify an alternate approach to the problem of the
determination of p(a, t) for the special case of Gaussian excitation. Specifically, assuming that
w(t) is Gaussian, it can be assured that x(t) and x(t) are jointly Gaussian; the probability
density function p(x, %) will depend on E[x*(t)], E[x%t)] and E[x(t)x(t)]. Subsequently, the
probability density function p(a,t) can be determined by using p(x,x) and the algebraic
transformation introduced by eqn (4). Using this approach it can be proved that at times
specified by eqn (30), the probability density function given by eqn (24) is identical to the exact
solution. This method, however, is applicable only for the case of Gaussian white noise and
does not utilize simplifications justified by the smail damping. In addition, this approach would
be extremely cumbersome to apply to the problem of structural response to modulated
Gaussian white noise because of the complexity of the corresponding solutions for E[x%(t)],
E[%*(1)] and E[x()%(t)]. A typical example of these solutions is given in Ref. [13]. It is
interesting to note that the methodology of the present paper can be readily applied to the
above problem without requiring that the white noise excitation be Gaussian[14].

Equations (25) and (26) can also be used to determine the rise time of the structure. Define
the rise time T; as the time required for the structural response to reach a fraction f of its
stationary level. Using eqns (25) and (26), it can be shown that the rise time for all moments of
the amplitude is given by

_In(1-f)
dw{

=i

(3D

where T = 2m/w, is the natural period of the structure.

NUMERICAL RESULTS

For the purpose of checking the results of the present approximate analytical method, a
simulation study of system (1) with { =0.02 was performed. For the generation of a sample
function of the excitation w(t), a sequence of normally distributed numbers G, ... Gy Was
first generated. Subsequently, the values G, ... G, Were assigned to 200 successive ordinates
spaced at equal intervals At'=0.01, along the dimensionless time abscissa t'=t/T. Linear
variation of the ordinates over each interval was assumed. A complete ensemble of 250 such
sample functions x,(t) (r=1,...250) was generated by repeating the above procedure 250
times. The response of the system (1) to each of the 250 sample function was computed by
numerical integration. Subsequently, the non-stationary mean value E(a)/o and standard
denotion [E(a)*— E%(a)]"*/o of the amplitude were computed by averaging the numerical data.
From Fig. 2 and Fig. 3 it is seen that the numerical data are in agreement with the
corresponding analytical expressions for the mean value and the standard deviation of a(t). It is
noted that the analytical solution not only predicts the correct qualitative nature of the
amplitude statistics, but the actual numerical values given by the two approaches are in close .
agreement in both the non-stationary and the stationary segments of the response.

The dimensionless rise time T;/T, eqn (30), has been plotted in Fig. 4 vs the ratio { of critical
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damping. The fraction f of the stationary value of the structural response used for the definition
of T; has been selected as a parameter to identify each curve. From Fig. 3 the rise time of the
structure corresponding to the given values of { and f can be read. For example, it is seen that
for { =0.01 the structural response reaches 75% of its stationary level in a time approximately
equal to 10 natural periods of oscillations, but approximately 25 more cycles of oscillation occur
before the response reaches 99% of its stationary level.

SUMMARY

The statistical aspects of the amplitude of the non-stationary response of a lightly damped
linear structure subjected to white noise excitation have been examined. It has been shown that
the probability density function of the amplitude can be approximated by a time dependent
Rayleigh ditribution. Analytical formulae for the statistical moments and the rise time of the
response have been derived. The analytical results of the presented approach have been found
in close agreement with the corresponding data of a numerical simulation study.
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